
MATHEMATICS OF COMPUTATION 
VOLUME 49, NUMBER 180 
OCTOBER 1987, PAGES 499-506 

Asymptotic Theory of Filtering for Linear Operator 
Equations with Discrete Noisy Data* 

By C. W. Groetsch and C. R. Vogel 

Abstract. We consider Fredholm integral equations of the first kind with continuous kernels in 
which the data is discretely sampled and contaminated by white noise. A sufficient condition 
for the convergence of general filtering methods applied to such equations is derived. The 
condition in essence relates the decay rate of the singular values of the integral operator to the 
shape of the filter function used in the regularization method. Specific illustrations of the 
condition are given for Tikhonov regularization, the truncated singular value decomposition, 
and Landweber iteration. 

1. Introduction. Many inverse problems of mathematical physics and problems of 
remote sensing lead to the solution of a Fredholm integral equation of the first kind, 

a (1) | ~~~~~k(s, 1)x(t) dt = g(s), c <- s < d, 

where k(., ) is a given square integrable kernel and g is a given function called the 
"data". (See Bertero, De Mol, and Viano [2] for an excellent introductory survey and 
general formulation of linear inverse problems in mathematical physics.) The major 
difficulty associated with the solution of such equations arises from the fact that they 
are ill-posed; specifically, the solution x, even if it exists and is unique, generally 
depends discontinuously on the data g. Since the data in practical circumstances are 
measured quantities, measurement errors can be magnified by the solution process 
and can produce large instabilities in the computed solution. In an attempt to cope 
with these instabilities, an extensive theory of "regularization" has been developed 
(see, e.g., [1], [6], and [5] for surveys). The idea of regularization methods is to 
replace the ill-posed problem (1) by a slightly perturbed well-posed problem which 
depends on a small positive parameter. One then wishes to show that the solutions of 
these well-posed problems converge to the solution of (1) as the parameter converges 
to zero in an appropriate fashion. 

It is convenient to study Eq. (1) in the abstract form 

(2) Kx = g 
where K: H1 -* H2 is a given compact linear operator from a real Hilbert space H1 
into a real Hilbert space H2 (the inner product and norm in Hi (i = 1,2) will be 
denoted by (, ), and 11 - Ili, respectively). We assume that (2) has a solution and we 
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seek the minimum norm solution, x. It then follows that 
00 

(3) x = Ktg = E A, (g,1 0)2w, 
i=1 

where Kt is the Moore-Penrose generalized inverse of K and {,,4'; i} is a 
singular system for K, that is, {(pi; X, } and { 4i; Xi} are orthonormal eigensystems 
(with XA = 2 > 0) for the operators K*K and KK*, respectively, where K* is the 
adjoint of K (see, e.g., [5]). We assume the singular values are ordered so that 

> /2 > ... > 0. It is clear from (3) that noise in the data connected with 
singular components associated with small singular values can be greatly amplified 
in computing the solution x. The deleterious effects of this high-frequency noise can 
be mitigated by introducing "filtered" approximations 

00 

(4) Xa = E wJ(X1)'I (g,4/j)2(i (a >0), 
i=1 

where wa is a filter function satisfying 0 < wa(X) < 1 and wa(X) - 1 as a -O 0 for 
each X > 0. The approximations Xa given in (4) are idealized approximations in the 
sense that the exact data function g, rather than a noisy version of g, is used. For 
these idealized approximations it can be shown that Xa - x as a -- 0 (see [5], where 
the corresponding notation is Ra(X) = wa(X)/X). In the case when only a noisy 
version g of the data is available, the corresponding approximation x5 is formed by 
replacing g with g in (4). In the deterministic theory of regularization, the regulari- 
zation parameter a must then be chosen in such a way that a -O 0 and xR - x as 
the error level in the data converges to zero. In this note we take a time series 
approach to general regularization. That is, we assume the data are discretely 
sampled and contaminated with white noise. The goal is then to relate the regulariza- 
tion parameter a to the data rate n (the number of data points sampled) in such a 
way that a -* 0 as n x-* o and xa converges in expectation to x. 

The most commonly used regularization method is Tikhonov regularization. In 

this method the approximation Xa is taken to be the minimizer of the Tikhonov 
functional 

,KU-gI2 +aIaTuII2 (a>0) 

where T is a regularizing operator (in the simplest case, T = I, and in general, T 
involves derivatives) whose function is to damp out instabilities in the computed 
solutions. The norms in the Tikhonov functional above are L2-norms and the 
minimizer of the functional Xa satisfies the Euler equation 

(K*K + aT*T)xa = K*g, 

where the adjoints are L2-adjoints. If we assume that IITxjj is a norm, then 

(xy)I = (Tx,Ty) 
defines an inner product, and it is easy to see that the Euler equation above is 
equivalent to 

(K*K + aI)xxa = K*g, 

where the adjoints now are computed with respect to the inner product (, )1 (see 
e.g. [5], [6]). The Tikhonov approximations now take the form 

Xa = (K*K + aI) 'K*g, 
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which corresponds to the filter function wa(X) = X/(X + a), where a is a positive 
parameter. 

Another widely used method is the truncated singular value expansion 
m 

Xm = E ~j~(g, 4'i)2T1 
i=l 

In this case, the regularization parameter is a positive integer m = [1/a] and the 
filter function satisfies 

( A (? < AMt+1, 
WMW L ~X < Xrn.i 

Iterative methods, such as Landweber iteration, 

x( = (I - K*K)x(m-1) + K*g, X(?) - 0 

(we assume here that the problem has been scaled so that IlK I 1), where 

Wm() = 1 ( )S m= 0, 1, 2, .... 

also fit into this scheme. (See also Anderssen and Prenter [1] for the relationship 
between Landweber iteration and Wiener filtering.) Note that in each of these 
examples the filter function is a monotonically increasing function of X for each 
fixed a (or m). 

Our interest is in the convergence of general filtering methods when the data are 
discretely sampled and noisy. In the case of Tikhonov regularization for kernels with 
eigenvalues having polynomial decay rates, results of this type were originally given 
by Wahba [13] and have been sharpened by Lukas [7] and, for convolution 
equations, by Davies and Anderssen [3]. See also the technical report [9] by Nychka 
and Cox. Vogel [12] has analyzed the case of truncated singular value expansions. 

2. Discretely Sampled Noisy Data. In practical problems the available data 
consists of discretely sampled values which are contaminated by error. Suppose that 
the sampling points are s1 < s2 <* ... < St and the measured data are represented 
by a vector d, where 

di= g(si)+ei, 1 i< n, 

and the error e = (e1,..., 8,)T is discrete white noise, that is, 

Ee =0 and E ejej) = (j(I < i, j '<= n 

where E is the expectation functional. Let Yn represent the Hilbert space consisting 
of R' endowed with the inner product 

ifl (ul v) = i uvi/n 

and define the operator K : L2[a, b] Yn by 

(K'x)i = (Kx)(si) = f k(s1, t)x(t) dt. 
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The L2-inner product and norm will be denoted (,.) and 1, respectively. Note 
that the adjoint of the discrete-valued operator Kn is the operator K *: Yn L2[a, b] 
given by 

1 n 

n nl.l 

The discrete, error-contaminated model for (1) may then be written 

d = Kn7x + F. 

If { Tpin, in, Yin }Ain- is a singular system for Kn, then 
n 

Ktv - E j(v, pin)Tin 
i= n 

for each v E Yn. According to a result of Nashed and Wahba [8], if the kernel k(*,*) 
is continuous and the union of the sampling points UOO ={is} n7 is dense in [c, d], 
then 

(5) |Kntg-Ktg|| O as n -* x, 

where g = (g(s1),..., g(sn))T. We shall study the convergence of the general filtered 

discrete approximations 
n 

Xna = s wa(Xin)pl(d, (din)Tin 
i=1 

with contaminated data vector d = K x + &. The analysis will depend upon the 
decay rate Xi of the eigenvalues and the shape of the filter function wa. Under 
appropriate assumptions we show that the condition 

n 

E W.(X1)2/Xi = o(n) as a -* 0, n xb 
i=1 

is sufficient to guarantee the convergence of the approximations Xna to x = Ktg, 
where Xi are assumed decay rates for the eigenvalue Xin (see below). Sufficient 
conditions for convergence of particular regularization methods (i.e., particular wa) 
can then be given for various assumed decay rates. 

Basic to our analysis is that the eigenvalues and coefficients of the "discrete" 
operator K *K satisfy: 

Xin -*Xi and (XTin) -*(XT) asn -*o 

(see Vogel [12] for a heuristic argument and Spence [10] for a more rigorous 
treatment). Specifically, we shall assume that 

in = Piinxi 0 < a ? /n ? b < so, 

(6) (xI Tin) = Yin(XT), IYin |IA C < Ah 

where 3n -4 1 and Yin * 1 as n --* (ooOin = 0 for i > n). For the case of poly- 
nomial decay, the first condition corresponds to the assumptions of Wahba [13] (see 
also Lukas [7] and Davies and Anderssen [3]). We shall not assume a specific form 
for the decay rates Xi or the coefficients (x, (i). The convergence condition for Xn a 
is that the decay rate of the eigenvalues is related to the filter function and data rate 
as expressed in Theorem 2 below. 
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We begin our analysis by introducing the expected square error in the filtered 
discrete approximations: 

;(a):= EF| xn a-Ktg 11K 

The first step is to show that T1(a) can be decomposed into deterministic and 
random parts. 

LEMMA. We have TI,(a) = Dn(a) + Rn(a), where 

Dn(a) = E [1-Wa(Xin )] -(g h n) 2//X in 
i=l 

and 

2 n 

Rn(a) = Wa(Xin) ,/X in, 

Proof. Let 4n = (4,(1) 4..lo(n))T; then by the assumptions on the noise, 

Y= E 44)E(eJ)/n = 0 
J=1 

and 

E(K? ll1ln)2) = E 42%Q/(j)4(,k )E(ejek)/n2 = a2/n. 
i=1 k=1 

Note that 

Ktg -Xn a = Y [1 -Wa(xin)] 11n 
i=1 

- E Wa(;In )/jip ( ?,4)Jln)9())n , 
i=li 

hence by the orthonormality of the eigenfunctions and the results on expectations 
noted above, 

Tn(a) = lXna - K,$g 2) 

1 a2 nn 

- E [1 - Wa(Xin )] 'Pgin4) 2/XIn + n wa(Xin i n 
i=l *=1 

= Dj(a) + Rn(a). E 

THEOREM 1. If a -* 0 as n -* oo, then Dn(a) -* 0. 

Proof. Since 

(g, 4i)2/n = (KnX, 4in)2/l = (X, K *41n) /Xn = (X, T1in)1 

we have by (6) 
fl 00 

D,7(a) = Y [1 - Wa(X)](X, ) <C dn(X, q9) 
*=1 *=1 
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where dn1 = [1 - wa (XR,)]2 for i < n and dni- 0 for i > n. However, by (6) and 
the assumptions on the filter function wa, we have for each i, 

1 = lim wa(aX,) < lim wa(Xin) < lim wa(bX,) = 1 
t? _) 00 ti _ 00 ti _ 00 

and hence dn -- 0 for each i as n -* x. Also, 
n 

d,11(x,9,)2 < (x,q91)2 and E (xT)2 <4 2 < 2 
*=1 

and therefore Dn(a) - 0 as n 
* x, by the dominated convergence theorem. E 

THEOREM 2. If a 0 as n * x in such a way that 

EW0(XI)2/XI = o(n) asn f x, 
*=1 

then R, (a) -* 0. 

Proof. From the monotonicity of the filter function and (6) we have 

Wa(Xin)2 wa(bXI )2 

;in aaX 

and hence 

2Rn(a) =YE Wa(Xin) i/nin Y- E w(bX) /X1, 
ff ~~i=1 ai=1 

By scaling the original equation by b'72, it follows that 

E W(XI)2/Xi = o(n) 
*=1 

is sufficient to give Rn(a) -* 0 as n x-* . E 

Using the result (5) of Nashed and Wahba and the theorems above we have 

COROLLARY. If a 0 and LZ= lWa(Xi)2/Xi = o(n), as n -- x, then 

E(IlKtg - x,1 all) -- 0 asn n . 

3. Some Illustrations. We now intepret the results above for some particular 
regularization methods and eigenvalue decay rates. We consider first the case of 
"polynomial decay", that is, XI = i-P for some p > 0, meaning cliP < ; < -P 
for some positive constants cl and c2. By the argument in Theorem 2 we see it is 
enough to consider XI = jP. 

For the case of Tikhonov regularization we have w,(X) = X/(X + a) and hence 

'7~~~~~~0 
E Wa(Xi) /X, s f t-p/(t-P + a)2dt = a-(P'1)1Plp 

*=1 0 

where lp = fO uP/(I + Up)2du < co for p > 1. Therefore, a sufficient condition 
for convergence is a-1 = o(nP/(P?1)). This condition is satisfied when the regulari- 

zation parameter is chosen by generalized cross validation (see [13]) or by the 
discrepancy principle (see [3]). 
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For the truncated singular value decomposition we have 

Wm(Xi)2//X= Wm(Xi)2/i tf t dt mP+'/(p + 1), 
*=1 *=1 0 

and hence we obtain the sufficient condition m = o(n 1/(P+1)) (see Vogel [12]) for 
the convergence of this method. 

In the case of Landweber iteration 
00 0 

E (x 2/X < f tP[j -(1 t-P)m]2dt 
i=1 1 

<f1 [1 - 
uUn]2p/(1 

- ) m2lp/p, 

where lp = fJ (1 - u)-1P du < x for p > 1. Hence a sufficient condition for 
convergence is m -o(n12). 

One can also consider the case of "exponential decay": Xi = exp(-pi). For this 
decay rate, and Tikhonov's method, we have 

00 00 ~e~t d I=0L du I 
E aA)2/X, _< l d=-l - = (+)' W. 

(0 (1?aeP2d 
= 

ap (I1?U)2 pa(I ?a) 

and hence a1 = o(n ) for some v with 0 < v < 1 is sufficient to guarantee that 

Rn(a) -> 0 as n -x o0. 

By similar arguments it is easy to show that for exponential decay the condition 
e = o(n1/p) is sufficient for convergence of the truncated singular value decom- 
position and m = o(n1/2) is sufficient for convergence of Landweber iteration. 
These results for exponential decay apply in particular to the problem of harmonic 
continuation in the unit disk in which the eigenvalues are Al = r' where 0 < r < 1 
(see Franklin [4]). 
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